The multivariate supOU stochastic volatility model

نویسندگان

  • Ole Eiler Barndorff-Nielsen
  • Robert Stelzer
چکیده

Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order structure of the volatility, the log returns, as well as their “squares” are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein-Uhlenbeck type stochastic volatility model behave under linear transformations. In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modelling approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models

Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...

متن کامل

Mixing Conditions for Multivariate Infinitely Divisible Processes with an Application to Mixed Moving Averages and the supOU Stochastic Volatility Model

We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [18] and Rosiński and Żak [23] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein-Uhlenbeck (...

متن کامل

Extremes of supOU processes

Barndorff-Nielsen and Shephard [3] investigate supOU processes as volatility models. Empirical volatility has tails heavier than normal, long memory in the sense that the empirical autocorrelation function decreases slower than exponential, and exhibits volatility clusters on high levels. We investigate supOU processes with respect to these stylized facts. The class of supOU processes is vast a...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

A Multivariate Ornstein-Uhlenbeck Type Stochastic Volatility Model

Using positive semidefinite processes of Ornstein-Uhlenbeck type a multivariate Ornstein-Uhlenbeck (OU) type stochastic volatility model is introduced. We derive many important statistical and probabilistic properties, e.g. the complete second order structure and a state-space representation. Noteworthy, many of our results are shown to be valid for the more general class of multivariate stocha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009